123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- import pandas as pd
- from jqdatasdk import *
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- import threading
- from sqlalchemy import create_engine
- import pymysql
- from datetime import datetime as dt
- start = dt.now()
- # 确定级别
- fre = '1d'
- # 连接数据库
- db = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='hlfx')
- # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8')
- # 获取所有表名——确定计算范围
- cursor = db.cursor()
- cursor.execute("show tables like '%%%s%%' "% fre)
- # stocks = [tuple[0] for tuple in cursor.fetchall()]
- stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
- # stocks = ['301058.XSHE']
- # stocks = stocks[0:500]
- print(dt.now(), 'stocks范围已获取!')
- # 获取各stock的去包含dataframe
- stk = locals()
- for stock in stocks:
- try:
- stk[stock] = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (stock, fre),
- engine2)
- except BaseException:
- continue
- print(dt.now(), '数据库数据已赋值!')
- thd = threading.local()
- def qbh_hlfx(stocks, df):
- for stock in stocks:
- try:
- # thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
- thd.df_day = stk[stock]
- thd.get_bars = df.loc[stock]
- stk_len = len(thd.df_day)
- # 先处理去包含
- for i in thd.get_bars.index:
- # 不包含
- if (thd.df_day.iloc[-1, 3] > thd.get_bars.loc[i, 'high']
- and thd.df_day.iloc[-1, 4] > thd.get_bars.loc[i, 'low']) \
- or (thd.df_day.iloc[-1, 3] < thd.get_bars.loc[i, 'high']
- and thd.df_day.iloc[-1, 4] < thd.get_bars.loc[i, 'low']):
- thd.df_day = pd.concat([thd.df_day, thd.get_bars.iloc[[i]]], ignore_index=True)
- # 包含
- else:
- # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
- # 左高,下降
- if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
- thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_bars.loc[i, 'high'])
- thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_bars.loc[i, 'low'])
- else:
- # 右高,上升
- thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_bars.loc[i, 'high'])
- thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_bars.loc[i, 'low'])
- # return thd.df_day
- if len(thd.df_day.index) > 2:
- # 寻找顶底分型
- for x in range(stk_len, len(thd.df_day.index)):
- m = x - 1
- # 底
- if ((thd.df_day.loc[x,'high']>thd.df_day.loc[x-1,'high']) and (thd.df_day.loc[x-2,'high']>thd.df_day.loc[x-1,'high'])):
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
- thd.df_day.loc[x, 'HL'] = 'L*'
- while m:
- if thd.df_day.loc[m, 'HL'] == 'H':
- if(x-m) > 3:
- thd.df_day.loc[x, 'HL'] = 'L'
- if x == len(thd.df_day.index) - 1:
- print(stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
- break
- elif (thd.df_day.loc[m, 'HL'] == 'L' ):
- if thd.df_day.loc[x-1, 'low'] < thd.df_day.loc[m-1, 'low']:
- # 前一个为底,且中间存在不包含 or 更低的底
- thd.df_day.loc[x, 'HL'] = 'L'
- if x == len(thd.df_day.index) - 1:
- # pass
- print(stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],'中继后的底————买吗?!')
- break
- else:
- break
- m = m-1
- # 顶
- elif ((thd.df_day.loc[x,'high']<thd.df_day.loc[x-1,'high']) and (thd.df_day.loc[x-2,'high']<thd.df_day.loc[x-1,'high'])):
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
- thd.df_day.loc[x, 'HL'] = 'H*'
- while m:
- if thd.df_day.loc[m, 'HL'] == 'L':
- if x-m > 3:
- thd.df_day.loc[x, 'HL'] = 'H'
- if x == len(thd.df_day.index) - 1:
- # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
- pass
- thd.df_day.loc[x, 9] = thd.df_day.loc[x, 'close'] - thd.df_day.loc[m, 'close']
- break
- elif (thd.df_day.loc[m, 'HL'] == 'H'):
- if thd.df_day.loc[x-1, 'high'] > thd.df_day.loc[m-1, 'high']:
- # 前一个为顶,且中间存在不包含 or 更高的顶
- thd.df_day.loc[x, 'HL'] = 'H'
- if x == len(thd.df_day.index) - 1:
- pass
- # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!')
- break
- break
- m = m-1
- else:
- thd.df_day.loc[x, 'HL'] = '-'
- print(thd.df_day)
- else:
- pass
- except BaseException:
- continue
- # while True:
- df = get_bars(stocks, count=2, unit=fre,
- fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
- print(dt.now(), 'get_bars 成功')
- # strattime = dt.now()
- qbh_hlfx(stocks, df)
- # endtime = dt.now()
- # end = dt.now()
- # print('单次时长为:', (endtime - strattime).seconds, '\n', '全时长为:', (end - start).seconds)
|