real_time_signal_30m.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. import pandas as pd
  2. from jqdatasdk import *
  3. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  4. import threading
  5. from sqlalchemy import create_engine
  6. import pymysql
  7. from datetime import datetime as dt
  8. start = dt.now()
  9. # 确定级别
  10. fre = '30m'
  11. # 连接数据库
  12. db = pymysql.connect(host='localhost',
  13. user='root',
  14. port=3307,
  15. password='r6kEwqWU9!v3',
  16. database='hlfx')
  17. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  18. engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8')
  19. # 获取所有表名——确定计算范围
  20. cursor = db.cursor()
  21. cursor.execute("show tables like '%%%s%%' "% fre)
  22. # stocks = [tuple[0] for tuple in cursor.fetchall()]
  23. stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
  24. # stocks = stocks[0:500]
  25. print(dt.now(), 'stocks范围已获取!')
  26. # 获取各stock的去包含dataframe
  27. stk = locals()
  28. for stock in stocks:
  29. try:
  30. stk[stock] = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (stock, fre),
  31. engine2)
  32. except BaseException:
  33. continue
  34. print(dt.now(), '数据库数据已赋值!')
  35. thd = threading.local()
  36. def qbh_hlfx(stocks, df):
  37. for stock in stocks:
  38. try:
  39. # thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  40. thd.df_day = stk[stock]
  41. thd.get_bars = df.loc[stock]
  42. stk_len = len(thd.df_day)
  43. # 先处理去包含
  44. for x in thd.get_bars.index:
  45. # 不包含
  46. if (thd.df_day.iloc[-1, 3] > thd.get_bars.loc[x, 'high']
  47. and thd.df_day.iloc[-1, 4] > thd.get_bars.loc[x, 'low']) \
  48. or (thd.df_day.iloc[-1, 3] < thd.get_bars.loc[x, 'high']
  49. and thd.df_day.iloc[-1, 4] < thd.get_bars.loc[x, 'low']):
  50. thd.df_day = pd.concat([thd.df_day, thd.get_bars.iloc[[x]]], ignore_index=True)
  51. # 包含
  52. else:
  53. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  54. # 左高,下降
  55. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  56. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_bars.loc[x, 'high'])
  57. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_bars.loc[x, 'low'])
  58. else:
  59. # 右高,上升
  60. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_bars.loc[x, 'high'])
  61. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_bars.loc[x, 'low'])
  62. # return thd.df_day
  63. if len(thd.df_day.index) > 2:
  64. # 寻找顶底分型
  65. for x in range(stk_len, len(thd.df_day.index)):
  66. m = x - 1
  67. # 底
  68. if ((thd.df_day.loc[x,'high']>thd.df_day.loc[x-1,'high']) and (thd.df_day.loc[x-2,'high']>thd.df_day.loc[x-1,'high'])):
  69. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  70. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  71. thd.df_day.loc[x, 'HL'] = 'L*'
  72. while m:
  73. if thd.df_day.loc[m, 'HL'] == 'H':
  74. if(x-m) > 3:
  75. thd.df_day.loc[x, 'HL'] = 'L'
  76. if x == len(thd.df_day.index) - 1:
  77. print(stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
  78. break
  79. elif (thd.df_day.loc[m, 'HL'] == 'L' ):
  80. if thd.df_day.loc[x-1, 'low'] < thd.df_day.loc[m-1, 'low']:
  81. # 前一个为底,且中间存在不包含 or 更低的底
  82. thd.df_day.loc[x, 'HL'] = 'L'
  83. if x == len(thd.df_day.index) - 1:
  84. # pass
  85. print(stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],'中继后的底————买吗?!')
  86. break
  87. else:
  88. break
  89. m = m-1
  90. # 顶
  91. elif ((thd.df_day.loc[x,'high']<thd.df_day.loc[x-1,'high']) and (thd.df_day.loc[x-2,'high']<thd.df_day.loc[x-1,'high'])):
  92. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  93. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  94. thd.df_day.loc[x, 'HL'] = 'H*'
  95. while m:
  96. if thd.df_day.loc[m, 'HL'] == 'L':
  97. if x-m > 3:
  98. thd.df_day.loc[x, 'HL'] = 'H'
  99. if x == len(thd.df_day.index) - 1:
  100. # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  101. pass
  102. thd.df_day.loc[x, 9] = thd.df_day.loc[x, 'close'] - thd.df_day.loc[m, 'close']
  103. break
  104. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  105. if thd.df_day.loc[x-1, 'high'] > thd.df_day.loc[m-1, 'high']:
  106. # 前一个为顶,且中间存在不包含 or 更高的顶
  107. thd.df_day.loc[x, 'HL'] = 'H'
  108. if x == len(thd.df_day.index) - 1:
  109. pass
  110. # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!')
  111. break
  112. break
  113. m = m-1
  114. else:
  115. thd.df_day.loc[x, 'HL'] = '-'
  116. except BaseException:
  117. continue
  118. while True:
  119. df = get_bars(stocks, count=20, unit=fre,
  120. fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
  121. print(dt.now(), 'get_bars 成功')
  122. # strattime = dt.now()
  123. qbh_hlfx(stocks, df)
  124. # endtime = dt.now()
  125. # end = dt.now()
  126. # print('单次时长为:', (endtime - strattime).seconds, '\n', '全时长为:', (end - start).seconds)