updata_qbh_hlfx_1114.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. import multiprocessing as mp
  2. import pandas as pd
  3. import pymysql
  4. from sqlalchemy import create_engine
  5. from datetime import datetime as dt
  6. import datetime
  7. # auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  8. def hlfx(stocks,fre,table_list):
  9. engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  10. engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8')
  11. for stock in stocks:
  12. # print(stock)
  13. if ('stk%s_%s' % (stock, fre)) in table_list:
  14. # 有历史数据
  15. index_len = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 0]
  16. # 注意修改time delta
  17. startdate = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 1]
  18. # startdate = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 1] + datetime.timedelta(minutes= 5)
  19. get_price = pd.read_sql_query(
  20. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine)
  21. get_price = get_price.loc[get_price['date'] > startdate]
  22. df_day = pd.read_sql_query(
  23. 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (stock, fre), engine2)
  24. if index_len > 2:
  25. # 先处理去包含
  26. for i in get_price.index:
  27. # 不包含
  28. if (df_day.iloc[-1, 3] > get_price.loc[i, 'high']
  29. and df_day.iloc[-1, 4] > get_price.loc[i, 'low']) \
  30. or (df_day.iloc[-1, 3] < get_price.loc[i, 'high']
  31. and df_day.iloc[-1, 4] < get_price.loc[i, 'low']):
  32. df_day = pd.concat([df_day, get_price.loc[[i]]], ignore_index=True)
  33. # print(df_day)
  34. # 包含
  35. else:
  36. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  37. # 左高,下降
  38. if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
  39. df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
  40. df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
  41. else:
  42. # 右高,上升
  43. df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
  44. df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
  45. # 寻找顶底分型
  46. if len(df_day.index) > 2:
  47. # 寻找顶底分型
  48. for x in range(index_len, len(df_day.index)):
  49. m = x - 1
  50. # 底
  51. if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and (
  52. df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
  53. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  54. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  55. df_day.loc[x, 'HL'] = 'L*'
  56. while m:
  57. if df_day.loc[m, 'HL'] == 'H':
  58. if (x - m) > 3:
  59. df_day.loc[x, 'HL'] = 'L'
  60. if x == len(df_day.index) - 1:
  61. # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], '买买买买买!!')
  62. pass
  63. break
  64. elif (df_day.loc[m, 'HL'] == 'L'):
  65. if df_day.loc[x - 1, 'low'] < df_day.loc[m - 1, 'low']:
  66. # 前一个为底,且中间存在不包含 or 更低的底
  67. df_day.loc[x, 'HL'] = 'L'
  68. if x == len(df_day.index) - 1:
  69. pass
  70. # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'],
  71. # '中继后的底————买吗?!')
  72. break
  73. else:
  74. break
  75. m = m - 1
  76. if m == 0:
  77. df_day.loc[x, 'HL'] = 'L'
  78. # 顶
  79. elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
  80. df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])):
  81. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  82. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  83. df_day.loc[x, 'HL'] = 'H*'
  84. while m:
  85. if df_day.loc[m, 'HL'] == 'L':
  86. if x - m > 3:
  87. df_day.loc[x, 'HL'] = 'H'
  88. if x == len(df_day.index) - 1:
  89. # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  90. pass
  91. break
  92. elif (df_day.loc[m, 'HL'] == 'H'):
  93. if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
  94. # 前一个为顶,且中间存在不包含 or 更高的顶
  95. df_day.loc[x, 'HL'] = 'H'
  96. if x == len(df_day.index) - 1:
  97. pass
  98. # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!')
  99. break
  100. break
  101. m = m - 1
  102. if m == 0:
  103. df_day.loc[x, 'HL'] = 'H'
  104. else:
  105. df_day.loc[x, 'HL'] = '-'
  106. # 更新数据库
  107. df_day[index_len + 1:].to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True,
  108. if_exists='append')
  109. else:
  110. df_day = pd.concat([df_day, get_price], ignore_index=True)
  111. df_day[index_len + 1:].to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True,
  112. if_exists='append')
  113. else:
  114. # 没有历史数据表
  115. df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  116. get_price = pd.read_sql_query(
  117. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine)
  118. # 先处理去包含
  119. for i in get_price.index:
  120. if i == 0 or i == 1:
  121. df_day = pd.concat([df_day, get_price.iloc[[i]]], ignore_index=True)
  122. # 不包含
  123. elif (df_day.iloc[-1, 3] > get_price.loc[i, 'high']
  124. and df_day.iloc[-1, 4] > get_price.loc[i, 'low']) \
  125. or (df_day.iloc[-1, 3] < get_price.loc[i, 'high']
  126. and df_day.iloc[-1, 4] < get_price.loc[i, 'low']):
  127. df_day = pd.concat([df_day, get_price.loc[[i]]], ignore_index=True)
  128. # 包含
  129. else:
  130. # 左高,下降
  131. if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
  132. df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
  133. df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
  134. else:
  135. # 右高,上升
  136. df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
  137. df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
  138. if len(df_day.index) > 2:
  139. # 寻找顶底分型
  140. for x in range(2, len(df_day.index)):
  141. m = x - 1
  142. # 底
  143. if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and (
  144. df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
  145. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  146. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  147. df_day.loc[x, 'HL'] = 'L*'
  148. while m:
  149. if df_day.loc[m, 'HL'] == 'H':
  150. if (x - m) > 3:
  151. df_day.loc[x, 'HL'] = 'L'
  152. if x == len(df_day.index) - 1:
  153. pass
  154. # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], '买买买买买!!')
  155. break
  156. elif (df_day.loc[m, 'HL'] == 'L'):
  157. if df_day.loc[x - 1, 'low'] < df_day.loc[m - 1, 'low']:
  158. # 前一个为底,且中间存在不包含 or 更低的底
  159. df_day.loc[x, 'HL'] = 'L'
  160. if x == len(df_day.index) - 1:
  161. pass
  162. # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], '中继后的底————买吗?!')
  163. break
  164. else:
  165. break
  166. m = m - 1
  167. if m == 0:
  168. df_day.loc[x, 'HL'] = 'L'
  169. # 顶
  170. elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
  171. df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])):
  172. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  173. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  174. df_day.loc[x, 'HL'] = 'H*'
  175. while m:
  176. if df_day.loc[m, 'HL'] == 'L':
  177. if x - m > 3:
  178. df_day.loc[x, 'HL'] = 'H'
  179. if x == len(df_day.index) - 1:
  180. # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  181. pass
  182. break
  183. elif (df_day.loc[m, 'HL'] == 'H'):
  184. if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
  185. # 前一个为顶,且中间存在不包含 or 更高的顶
  186. df_day.loc[x, 'HL'] = 'H'
  187. if x == len(df_day.index) - 1:
  188. pass
  189. # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!')
  190. break
  191. break
  192. m = m - 1
  193. if m == 0:
  194. df_day.loc[x, 'HL'] = 'H'
  195. else:
  196. df_day.loc[x, 'HL'] = '-'
  197. # 更新数据库
  198. df_day.to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True, if_exists='append')
  199. if __name__ == '__main__':
  200. engine_stocks_list = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  201. # stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  202. stocks = pd.read_sql_query(
  203. 'select securities from stocks_list', engine_stocks_list)
  204. stocks = stocks.iloc[-1, 0]
  205. stocks = stocks.split(",")
  206. print(len(stocks), type(stocks), stocks)
  207. # stocks = stocks[0:1000]
  208. start = dt.now()
  209. # 确定级别
  210. # 注意修改time delta
  211. # fre = '30m'
  212. for fre in ['1d', '30m']:
  213. start = dt.now()
  214. print(fre)
  215. # 连接数据库
  216. db = pymysql.connect(host='localhost',
  217. user='root',
  218. port=3307,
  219. password='r6kEwqWU9!v3',
  220. database='hlfx')
  221. cursor = db.cursor()
  222. cursor.execute("show tables like '%%%s%%' " % fre)
  223. table_list = [tuple[0] for tuple in cursor.fetchall()]
  224. print('取得 table_list %s' % fre)
  225. step = 800
  226. mp_list = []
  227. print(len(stocks))
  228. for i in range(0, len(stocks), step):
  229. p = mp.Process(target=hlfx, args=(stocks[i:i + step], fre, table_list, ))
  230. mp_list.append(p)
  231. p.start()
  232. for processing in mp_list:
  233. processing.join()
  234. # db.close()
  235. end = dt.now()
  236. print('总时长:', (end - start).seconds)